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The tricatechol ligand, tripace, forms an octahedral complex with TilV; the complex possesses a protonated central
nitrogen atom in the ‘in’ conformation and is stable towards reduction up to £y, = —1.02 V vs. standard calomel

electrode.

The nearly ideal radiophysical properties of the metastable
nuclide 9mTc (¢, = 6.02 h, E, = 140.6 keV!) have made this
isotope the most commonly used nuclide for the imaging of
internal organs.2 We reported the synthesis of the sidero-
phore-like hexadentate tricatechol ligand tripace,® which is
capable of reducing the nuclide-generator produced
[99mTcO4)~ (presumably to TcV!4) and to bind the reduced
99mT¢e 5

The species formed from 9Mo/9mTc-generator eluate and
tripace cannot be investigated by standard methods owing to
the short half-life of 9°mTc. We have, therefore, studied the
coordination chemistry of tripace$ with another highly oxi-
dized transition metal and report the molecular structure of
[HNEt;][Ti(tripace)]-1.5MeCN and the electrochemical
behaviour of this complex.

The ligand tripace reacts in the presence of [HNEt;]-
[MeCO,] in ethanol with Ti(OEt),; to give orange
[HNEt;][Ti(tripace)], which was fully characterized by
elemental analysis, 'H NMR and 13C NMR spectroscopy.t
The salt can be crystallized from acetonitrile to give orange
prisms of [HNEt;)[Ti(tripace)]-1.5MeCN.

The structure analysisi of [HNEt;][Ti(tripace)]-1.5MeCN
(Fig. 1) shows the anion to contain a hexacoordinated Ti'V in
the centre of a distorted octahedron made up from six catechol
oxygens. The structure is similar to the structures of metal
catechoylamides like K;[V(trencam)]” and Nas[Fe(bicapped
trencam)].8 In these derivatives as well as in the [Ti(tripace)]~
anion, the central nitrogen atom is in the ‘in’ conformation.
The striking difference between the metal complexes of
catechoylamides and the [Ti(tripace)]~ anions is the fact that
the central nitrogen in the latter derivative is protonated.

The hydrogen atom bound to N(1)[NH(1)] was found in a
difference Fourier map and its positional parameters refined

+ Selected spectroscopic data for solvent free [HNEt;][Ti(tripace)]: 'H
NMR (CD;SOCDs), & 1.15 (t, 9H, CHj3), 1.97 (br m, 6H,
CH,CH,CH,), 3.07 (g, 6H, CH3CH,), 3.35 (br m, 6H, NCH,CHy),
3.76 (br m, 6H, OCH,), 5.92 (dd, 3H, Ar-H), 6.13 (dd, 3H, Ar-H)
6.27 (t, 3H, Ar-H), 7.89 (s, 1H, HN-tripace), 8.90 (s, 1H, HNEt37);
13C NMR (CD;SOCD;3), & 8.53 (Me), 23.3 (CH,CH,CH,), 45.8
(HNCH,Me), 49.8 (NCH,CH,), 70.8 (OCH,), 107.1, 111.5, 116.1,
141.9, 153.6, 160.3 (Ar). Satisfactory elemental analysis for
[HNEts][Ti(tripace)]-1.5 MeCN was obtained.

1 Crystal data for [HNEt:][Ti(tripace)]-1.5MeCN: C36Hug sN3 sO0Ti,
orange prisms, M = 722.2, monoclinic spacefroup P2y/c (no. 14),a =
12.798(6), b = 21.717(7), ¢ = 14.078(9) A, B = 112.00(4)°, U =
3628(6) A3, D, = 1.30, D, = 1.32 g em—3, Mo-K« radiation (A =
0.71073 A), w(Mo-Ka«) = 2.78 cm~1. 6142 Reflections collected at
—100(5) °C on a four-circle diffractometer in the 20-range between 2
and 48°. Redundant and systematically absent data were removed
leaving 5690 unique reflections. The structure was solved by heavy
atom methods, and refined [Ti, O, N, C anisotropic; HN(1) found in
difference Fourier map and refined with fixed isotropic temperature
factor, other Hs in calculated positions unrefined with fixed Bq = 1.3
By of the parent atom] to R = 0.0454, R,, = 0.0446 for 2536
reflections [F,2 = 30(F,2)]. Atomic coordinates, bond lengths and
angles, and thermal parameters have been deposited at the Cam-
bridge Crystallographic Data Centre. See Notice to Authors, Issue
No. 1.

in the least-squares procedure to give an N(1)-HN(1) distance
of 1.05(6) A. The N(1)-HN(1) vector is not pointed towards
any of the catechol oxygen atoms as judged by the angles at
N(1), the HN(1)-O distances and N(1)-HN(1)-O angles
[HN(1)-O 2.22(6)-2.38(6) A, N(1)-HN—(1)-O 129(4)-
145(4)°]. This vector points towards the titanium atom
[HN(1) - - - Ti 2.87(6) A, N(1)-HN(1)-Ti 170(4)°].

The protonation of N(1) is significant for 9mTc derivatives.
If the reaction of [9mTcOy4]~ with tripace does indeed give
TcV1 complexes, then these derivatives would be mono-
cationic, owing to the protonated central amine. One major
complication in the application of cationic ¥mTc complexes
concerns the in vivo reduction of the metal centre, giving a
complex with different charge and biodistribution than the
original monocation.® We have, therefore, studied the electro-
chemical properties of [HNEt;][Ti(tripace)] to see if the
ligand is capable of stabilizing highly oxidized transition
metals.

Cyclic voltammograms (CV) of an acetonitrile solution of
[HNEt;][Ti(tripace)] (10 mmol dm=3) in tetraethylammonium
hexafluorophosphate (0.1 mol dm~—3) are shown in Fig. 2. At
20 °C only an irreversible reduction is observed. At lower
temperatures (—35 °C) the corresponding oxidation wave
appears. However, the electrochemical process at —1.02 V

HCI

Fig. 1 ORTEP drawing of the [Ti(tripace)]~ anion in [HNEt;][Ti(tri-
pace)]-1.5MeCN. Selected bond length (A): Ti-O in the range from
1.979(3) to 1.939(3), N(1)-HN(1) 1.05(6). Selected bond angles (°):
O(1)-Ti-O(2) 80.3(1), O(4)-Ti—O(5) 80.0(1), O(7)-Ti-O(8) 80.2(1).
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Fig. 2 Cyclic voltammograms (CV) and AC reduction of [HNEt;]-
[Ti(tripace)] at different temperatures (SCE = standard calomel

electrode)
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(vs. SCE) is at best quasi-reversible. Experiments with AC
techniques give a quasi-reversible reduction at E,, = —1.03 V
(Fig. 2). Since the reduction of [Ti(tripace)]- is not reversible,
the number of electrons in the reduction step could not be
determined by coulometric methods. However, based on
chemical and electrochemical analogies,'® a one-electron
reduction can be proposed. The shift of the TilV/Tilll
reduction potential [+0.30 V vs. SCE for Ti(OH),+/Ti3+]1 by
1.32 V shows the remarkable ability of tripace to stabilize
highly oxidized transition metals.
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